PROBLEMATIC HEALTH BEHAVIOR: EXPERIENTIAL AVOIDANCE AS A COMMON FUNCTION

ACBS World Conference

July 29, 2018

Anne I. Roche, MA and Emily B. Kroska, MA

University of Iowa Department of Psychological and Brain Sciences

SUPPORT

• These studies were supported in part by the National Institutes of Health T32 GM108540 and by departmental funding obtained by Michael W. O'Hara, PhD

PROBLEMATIC HEALTH BEHAVIOR

 Problematic health behaviors tend to co-occur, and previous work has proposed a common higher order factor that may help to account for this covariation (Cooper, Wood, Orcutt, & Albino, 2003; Donovan & Jessor, 1985; Kingston, Clark, Ritchie, & Remington, 2011)

EXPERIENTIAL AVOIDANCE

• Any attempt to alter or change the form, frequency, or intensity of unpleasant internal experiences (thoughts, emotions, physical sensations, urges)

HEALTH BEHAVIOR

CHILDHOOD TRAUMA AND PROBLEM BEHAVIOR SYSTEMATIC REVIEW AND META-ANALYSES

CHILDHOOD TRAUMA AND PROBLEM BEHAVIOR: EXAMINING THE MEDIATING ROLES OF EXPERIENTIAL AVOIDANCE AND MINDFULNESS PROCESSES

- Childhood trauma has been shown to be associated with engagement in problematic health behavior in adulthood (Felitti et al., 1998).
- Trauma-exposed individuals may be particularly likely to use avoidance strategies in an attempt to control or suppress internal experiences (Follette, Palm, & Pearson, 2006).
- Previous work has shown experiential avoidance to fully mediate the association between childhood trauma and problem behavior in a clinical sample (Kingston, Clark, & Remington, 2010) and to partially mediate the same association in a nonclinical college sample (Lewis & Naugle, 2017).

- To what extent does experiential avoidance mediate the association between childhood trauma and problem behavior?
- Does mindfulness mediate the association between childhood trauma and problem behavior?
 - Observe
 - Describe
 - Act with Awareness
 - Nonjudgment
 - Nonreactivity

- N = 414 college-age students
- % Female: 64.0%
- % White, Non-Hispanic: 68.1%
- % Heterosexual: 88.1%

- Completed self-report measures of:
 - Childhood Trauma (Early Trauma Inventory Self Report-Short Form)
 - Experiential Avoidance (Acceptance and Action Questionnaire-II)
 - Mindfulness (Five-Facet Mindfulness Questionnaire)
 - observe, describe, act with awareness, nonjudgment of experience, nonreactivity
 - Problem Behavior (Composite Measure of Problem Behaviors)
 - deliberate self-harm, binge eating, excessive alcohol use, drug use, nicotine use, sexual promiscuity, excessive internet/computer use, aggression

 $P_{M} = .43$

Note: Unstandardized coefficients * = p < .05, ** = p < .01, ° = CI does not include zero

Adapted from: Roche, Kroska, Miller, Kroska, & O'Hara, 2018 (in press)

Nonjudgment $P_M = .19$ Act with Awareness $P_M = .19$

Note: Unstandardized coefficients

* = p < .05, ** = p < .01, ^c = CI does not include zero

Adapted from: Roche, Kroska, Miller, Kroska, & O'Hara, 2018 (in press)

PROCESS-BASED MECHANISMS

- Topographically different behaviors may serve a common function
- These processes may be important in the development and maintenance of problematic behaviors
- These processes may be important to target in health behavior change intervention work

HEALTH BEHAVIOR

CHILDHOOD TRAUMA AND PROBLEM BEHAVIOR SYSTEMATIC REVIEW AND META-ANALYSES

STUDY 2 ACCEPTANCE- AND MINDFULNESS-BASED INTERVENTIONS FOR SMOKING CESSATION AND WEIGHT LOSS: META ANALYSES

- Review the state of the literature examining the efficacy of acceptance- and mindfulness-based interventions targeting smoking cessation and weight loss
- Quantitatively synthesize the existing evidence for the utility of these interventions for the important public health outcomes of smoking cessation and weight loss

SMOKING CESSATION

<u>Study name</u>		<u>Statisti</u>	Odds ratio				
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value		
Brewer_2011	2.270	0.938	5.495	1.818	0.069		
Bricker_2013	3.050	1.004	9.265	1.967	0.049		
Bricker_2014a	1.500	0.681	3.306	1.006	0.315		-
Bricker_2014b	1.571	0.567	4.352	0.870	0.384		
Brown_2013	1.730	0.461	6.493	0.812	0.417		
Davis_2014a	2.270	1.018	5.061	2.004	0.045		
Davis_2014b	1.040	0.502	2.155	0.106	0.916		
Gifford_2004	1.059	0.365	3.070	0.105	0.916		
Gifford_2011	2.322	1.402	3.847	3.271	0.001		
Russell_2013	0.853	0.284	2.558	-0.284	0.776		
Vidrine_2016	1.102	0.687	1.769	0.402	0.688		
	1.562	1.234	1.978	3.707	0.000		

Odds ratio and 95% Cl

Odds Ratio = 1.562

Control Intervention

5 10

0.1 0.2 0.5 1 2

WEIGHT LOSS

Study name	Statistics for each study								
	Hedges's	Standard		Lower	Upper				
	g	error	Variance	limit	limit	Z-Value	p-Value		
Alberts_2010	0.491	0.446	0.199	-0.383	1.366	1.101	0.271		
Alberts_2012	0.260	0.383	0.146	-0.490	1.010	0.680	0.497		
Blevins_2008	0.095	0.403	0.162	-0.694	0.884	0.236	0.813		
Butryn_2017	0.045	0.153	0.024	-0.256	0.346	0.293	0.769		
Corsica_2014	-0.295	0.414	0.172	-1.107	0.517	-0.713	0.476		
Daubenmier_2011	0.172	0.287	0.083	-0.391	0.735	0.598	0.550		
Daubenmier_2016	0.135	0.143	0.021	-0.146	0.416	0.941	0.347		
Fletcher_2011	0.052	0.251	0.063	-0.440	0.545	0.209	0.835		
Forman_2013	0.247	0.179	0.032	-0.103	0.597	1.384	0.166		
Forman_2016	0.386	0.146	0.021	0.100	0.672	2.643	0.008		
Frisvold_2009	0.009	0.318	0.101	-0.614	0.632	0.028	0.977		- -
Katterman_2014	0.664	0.295	0.087	0.085	1.243	2.247	0.025		
Lillis_2009	0.633	0.222	0.049	0.198	1.068	2.854	0.004		
Lillis_2016	-0.033	0.169	0.029	-0.365	0.299	-0.197	0.844		
Mantzios_2014	0.858	0.244	0.059	0.380	1.336	3.517	0.000		
Mantzios_2015	2.080	0.357	0.127	1.381	2.780	5.828	0.000		
Miller_2012	-0.507	0.278	0.077	-1.052	0.037	-1.825	0.068		
Palmeira_2017	0.552	0.236	0.056	0.089	1.015	2.337	0.019		
Parswani_2013	0.072	0.355	0.126	-0.625	0.768	0.202	0.840		-
Raja-Khan_2017	-0.466	0.278	0.077	-1.011	0.080	-1.673	0.094		
Richards_2015	0.588	0.334	0.111	-0.066	1.242	1.763	0.078		
Sairanen_2017	0.264	0.174	0.030	-0.077	0.605	1.516	0.129		
Spadaro_2008	0.529	0.295	0.087	-0.049	1.108	1.793	0.073		
Tapper_2009	0.315	0.252	0.064	-0.180	0.810	1.248	0.212		
Timmerman_2012	0.804	0.345	0.119	0.128	1.481	2.330	0.020		
	0.301	0.084	0.007	0.137	0.465	3.593	0.000		
								-2.00	-1.00

Hedge's g = 0.301

Control Intervention

1.00

2.00

0.00

FUNCTIONAL SIMILARITY?

- Previous work has shown that reductions in avoidance mediate smoking cessation and weight loss outcomes post acceptancebased intervention (Gifford & Lillis, 2009).
- Current meta-analyses:
 - Smoking Cessation:
 - standardized difference in means = 0.25, 95% CI = 0.12, 0.38, z = 3.71, p < .001, k = 11
 - Weight Loss:
 - standardized difference in means = 0.31, 95% CI = 0.14, 0.47, z = 3.60, p < .001, k = 25

IMPLICATIONS

- Targeting transdiagnostic processes
- Groups?
- Efficacious
 - importance of behavior change interventions

THANK YOU!

